Search results
Results from the WOW.Com Content Network
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
Sieve elements are specialized cells that are important for the function of phloem, which is a highly organized tissue that transports organic compounds made during photosynthesis. Sieve elements are the major conducting cells in phloem. Conducting cells aid in transport of molecules especially for long-distance signaling.
Unlike the collenchyma, mature sclerenchyma is composed of dead cells with extremely thick cell walls (secondary walls) that make up to 90% of the whole cell volume. The term sclerenchyma is derived from the Greek σκληρός (sklērós), meaning "hard." It is the hard, thick walls that make sclerenchyma cells important strengthening and ...
Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem Detail of the vasculature of a bramble leaf Translocation in vascular plants. Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem ...
Companion cell; Phloem fiber; Phloem parenchyma. Phloem is an equally important plant tissue as it also is part of the 'plumbing system' of a plant. Primarily, phloem carries dissolved food substances throughout the plant. This conduction system is composed of sieve-tube member and companion cells, that are without secondary walls.
According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent xylem. This creates turgor pressure, also called hydrostatic pressure, in the phloem. The hypothesis states ...
Most of the vascular cambium is here in vascular bundles (ovals of phloem and xylem together) but it is starting to join these up as at point F between the bundles. The vascular cambium is the main growth tissue in the stems and roots of many plants, specifically in dicots such as buttercups and oak trees , gymnosperms such as pine trees , as ...
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.