Search results
Results from the WOW.Com Content Network
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
Lactic acidosis is commonly found in people who are unwell, such as those with severe heart and/or lung disease, a severe infection with sepsis, the systemic inflammatory response syndrome due to another cause, severe physical trauma, or severe depletion of body fluids. [3]
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
In these conditions, bicarbonate concentrations decrease by acting as a buffer against the increased presence of acids (as a result of the underlying condition). The bicarbonate is consumed by the unmeasured cation(H+) (via its action as a buffer) resulting in a high anion gap. [citation needed]
High volume hypernatremia can be due to hyperaldosteronism, excessive administration of intravenous normal saline or sodium bicarbonate, or rarely from eating too much salt. [1] [2] Low blood protein levels can result in a falsely high sodium measurement. [4] The cause can usually be determined by the history of events. [1]
The diet-induced obesity model (DIO model) is an animal model used to study obesity using animals that have obesity caused by being fed high-fat or high-density diets. [1] It is intended to mimic the most common cause of obesity in humans. [2] Typically mice, rats, dogs, or non-human primates are used in these models.
The bicarbonate ion (hydrogencarbonate ion) is an anion with the empirical formula HCO − 3 and a molecular mass of 61.01 daltons; it consists of one central carbon atom surrounded by three oxygen atoms in a trigonal planar arrangement, with a hydrogen atom attached to one of the oxygens.
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”