Search results
Results from the WOW.Com Content Network
Interstitial solid solutions form when the solute atom is small enough (radii up to 57% the radii of the parent atoms) [2] to fit at interstitial sites between the solvent atoms. The atoms crowd into the interstitial sites, causing the bonds of the solvent atoms to compress and thus deform (this rationale can be explained with Pauling's rules ).
Hume-Rothery rules, named after William Hume-Rothery, are a set of basic rules that describe the conditions under which an element could dissolve in a metal, forming a solid solution. There are two sets of rules; one refers to substitutional solid solutions, and the other refers to interstitial solid solutions.
A solid solution, a term popularly used for metals, is a homogeneous mixture of two compounds in solid state and having a single crystal structure. [1] Many examples can be found in metallurgy , geology , and solid-state chemistry .
This is a schematic illustrating how the lattice is strained by the addition of interstitial solute. Notice the strain in the lattice that the solute atoms cause. The interstitial solute could be carbon in iron for example. The carbon atoms in the interstitial sites of the lattice creates a stress field that impedes dislocation movement.
Homogeneous and heterogeneous solid solutions of metals, and interstitial compounds such as carbides and nitrides are excluded under this definition. However, interstitial intermetallic compounds are included, as are alloys of intermetallic compounds with a metal.
The predominant phase was a face-centered cubic solid-solution phase, containing mainly Cr, Mn, Fe, Co, and Ni. From that result, the CrMnFeCoNi alloy, which forms only a solid-solution phase, was developed. [22] The Hume-Rothery rules have historically been applied to determine whether a mixture will form a solid solution. Research into high ...
Interstitial atoms (blue) occupy some of the spaces within a lattice of larger atoms (red) In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure.
In crystallography, a Frenkel defect is a type of point defect in crystalline solids, named after its discoverer Yakov Frenkel. [1] The defect forms when an atom or smaller ion (usually cation) leaves its place in the structure, creating a vacancy and becomes an interstitial by lodging in a nearby location. [2]