Search results
Results from the WOW.Com Content Network
Many biological structures including the shells of mollusks. [14] In these cases, the reason may be construction from expanding similar shapes, as is the case for polygonal figures. Logarithmic spiral beaches can form as the result of wave refraction and diffraction by the coast. Half Moon Bay (California) is an example of such a type of beach ...
Here φ is the angle that a line connecting the origin with a point on the unit circle makes with the positive real axis, measured counterclockwise and in radians. The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x ( see above ).
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
where the sequence {β k} of points in the complex plane is known as the set of interpolation points. A sequence of rational approximants R m,n can be formed for such a series L in a manner entirely analogous to the procedure described above, and the approximants can be arranged in a Newton-Padé table .
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
In the projective plane, each line will intersect a cubic at three points when accounting for multiplicity. For a point P, −P is defined as the unique third point on the line passing through O and P. Then, for any P and Q, P + Q is defined as −R where R is the unique third point on the line containing P and Q.
In combinatorial mathematics, the exponential formula (called the polymer expansion in physics) states that the exponential generating function for structures on finite sets is the exponential of the exponential generating function for connected structures. The exponential formula is a power series version of a special case of Faà di Bruno's ...