Search results
Results from the WOW.Com Content Network
If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.
Also, as the result of multiplication does not depend on the order of the factors, the distinction between "multiplicand" and "multiplier" is useful only at a very elementary level and in some multiplication algorithms, such as the long multiplication. Therefore, in some sources, the term "multiplicand" is regarded as a synonym for "factor". [12]
In elementary arithmetic, a standard algorithm or method is a specific method of computation which is conventionally taught for solving particular mathematical problems. . These methods vary somewhat by nation and time, but generally include exchanging, regrouping, long division, and long multiplication using a standard notation, and standard formulas for average, area, and vol
Schoolbook long multiplication Karatsuba algorithm 3-way Toom–Cook multiplication ()-way Toom–Cook multiplication ( ) Mixed-level Toom–Cook (Knuth 4.3.3 ...
In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add.
Astronomers had to make thousands of such calculations, and because the best method of multiplication available was long multiplication, most of this time was spent taxingly multiplying out products. Mathematicians, particularly those who were also astronomers, were looking for an easier way, and trigonometry was one of the most advanced and ...
An example of an external operation is scalar multiplication, where a vector is multiplied by a scalar and result in a vector. An n -ary multifunction or multioperation ω is a mapping from a Cartesian power of a set into the set of subsets of that set, formally ω : X n → P ( X ) {\displaystyle \omega :X^{n}\rightarrow {\mathcal {P}}(X)} .
For long multiplication in the quater-imaginary system, the two rules stated above are used as well. When multiplying numbers, multiply the first string by each digit in the second string consecutively and add the resulting strings. With every multiplication, a digit in the second string is multiplied with the first string.