enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vacuum energy - Wikipedia

    en.wikipedia.org/wiki/Vacuum_energy

    The field strength of vacuum energy is a concept proposed in a theoretical study that explores the nature of the vacuum and its relationship to gravitational interactions. The study derived a mathematical framework that uses the field strength of vacuum energy as an indicator of the bulk (spacetime) resistance to localized curvature.

  3. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    The Heisenberg uncertainty principle allows the energy to be as large as needed to promote quantum actions for a brief moment of time, even if the average energy is small enough to satisfy relativity and flat space. To cope with disagreements, the vacuum energy is described as a virtual energy potential of positive and negative energy. [93]

  4. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...

  5. Equation of state (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state_(cosmology)

    A scalar field can be viewed as a sort of perfect fluid with equation of state = ˙ ˙ + (), where ˙ is the time-derivative of and () is the potential energy. A free ( V = 0 {\displaystyle V=0} ) scalar field has w = 1 {\displaystyle w=1} , and one with vanishing kinetic energy is equivalent to a cosmological constant: w = − 1 {\displaystyle ...

  6. Cosmological constant problem - Wikipedia

    en.wikipedia.org/wiki/Cosmological_constant_problem

    The calculated vacuum energy is a positive, rather than negative, contribution to the cosmological constant because the existing vacuum has negative quantum-mechanical pressure, while in general relativity, the gravitational effect of negative pressure is a kind of repulsion.

  7. Energy condition - Wikipedia

    en.wikipedia.org/wiki/Energy_condition

    Being negative for parallel plates, the vacuum energy is positive for a conducting sphere.) However, various quantum inequalities suggest that a suitable averaged energy condition may be satisfied in such cases. In particular, the averaged null energy condition is satisfied in the Casimir effect. Indeed, for energy–momentum tensors arising ...

  8. Dirac sea - Wikipedia

    en.wikipedia.org/wiki/Dirac_sea

    It still lowers the energy of the vacuum, but in this point of view it does so by creating a negative energy object. This reinterpretation only affects the philosophy. To reproduce the rules for when annihilation in the vacuum gives zero, the notion of "empty" and "filled" must be reversed for the negative energy states.

  9. Vacuum - Wikipedia

    en.wikipedia.org/wiki/Vacuum

    As a result, QED vacuum contains vacuum fluctuations (virtual particles that hop into and out of existence), and a finite energy called vacuum energy. Vacuum fluctuations are an essential and ubiquitous part of quantum field theory. Some experimentally verified effects of vacuum fluctuations include spontaneous emission and the Lamb shift. [15]