Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve . An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
Spring balances come in different sizes. Generally, small scales that measure newtons will have a less firm spring (one with a smaller spring constant) than larger ones that measure tens, hundreds or thousands of newtons or even more depending on the scale of newtons used. The largest spring scale ranged in measurement from 5000 to 8000 newtons.
is a constant with units of newton-meters / radian, variously called the spring's torsion coefficient, torsion elastic modulus, rate, or just spring constant, equal to the change in torque required to twist the spring through an angle of 1 radian.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: T = 2 π m k {\displaystyle T=2\pi {\sqrt {\frac {m}{k}}}} shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Equivalent Spring Constant (Series) When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on ...