Search results
Results from the WOW.Com Content Network
The Finite volume method in computational fluid dynamics is a discretization technique for partial differential equations that arise from physical conservation laws. These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos.
The face areas in y two dimensional case are : = = and = =. We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain.
Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures .
In the 3rd century BC, Archimedes, using a method resembling Cavalieri's principle, [5] was able to find the volume of a sphere given the volumes of a cone and cylinder in his work The Method of Mechanical Theorems. In the 5th century AD, Zu Chongzhi and his son Zu Gengzhi established a similar method to find a sphere's volume. [2]
One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In its basic form, Godunov's method is first order accurate in both space and time, yet can be used as a base scheme for developing higher-order methods.
The new proofs involve using the Laplace transform of a carefully chosen modular function to construct a radially symmetric function f such that f and its Fourier transform f̂ both equal 1 at the origin, and both vanish at all other points of the optimal lattice, with f negative outside the central sphere of the packing and f̂ positive.
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [ 1 ] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [ 2 ]
The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()