Search results
Results from the WOW.Com Content Network
Vladimir Karapetoff (1944) "The special theory of relativity in hyperbolic functions", Reviews of Modern Physics 16:33–52, Abstract & link to pdf; Lanczos, Cornelius (1949), The Variational Principles of Mechanics, University of Toronto Press, pp. 304– 312 Also used biquaternions. French, Anthony (1968). Special Relativity. W. W. Norton ...
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
A previously popular description of special relativity's predictions, in which an observer sees a passing object to be contracted (for instance, from a sphere to a flattened ellipsoid), was wrong. A sphere maintains its circular outline since, as the sphere moves, light from further points of the Lorentz-contracted ellipsoid takes longer to ...
English: This file is the special relativity lecture of the Wikiversity:Special relativity and steps towards general relativity course. It is in pdf format for convenient viewing as a fullscreen, structured presentation in a classroom.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics. The Schrödinger equation and the Heisenberg picture resemble the classical equations of motion in the limit of large quantum numbers and as the reduced ...
The concept of a "world line" is distinguished from concepts such as an "orbit" or a "trajectory" (e.g., a planet's orbit in space or the trajectory of a car on a road) by inclusion of the dimension time, and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in spacetime to show ...