enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maze-solving algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze-solving_algorithm

    Robot in a wooden maze. A maze-solving algorithm is an automated method for solving a maze.The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that can see the whole maze at once.

  3. Lee algorithm - Wikipedia

    en.wikipedia.org/wiki/Lee_algorithm

    The Lee algorithm is one possible solution for maze routing problems based on breadth-first search. It always gives an optimal solution, if one exists, but is slow and requires considerable memory. It always gives an optimal solution, if one exists, but is slow and requires considerable memory.

  4. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    Maze generation animation using a tessellation algorithm. This is a simple and fast way to generate a maze. [3] On each iteration, this algorithm creates a maze twice the size by copying itself 3 times. At the end of each iteration, 3 paths are opened between the 4 smaller mazes. The advantage of this method is that it is very fast.

  5. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    The above algorithms are among the best general algorithms which operate on a graph without preprocessing. However, in practical travel-routing systems, even better time complexities can be attained by algorithms which can pre-process the graph to attain better performance. [2] One such algorithm is contraction hierarchies.

  6. Maze runner - Wikipedia

    en.wikipedia.org/wiki/Maze_runner

    A maze runner may use the Lee algorithm. It uses a wave propagation style (a wave are all cells that can be reached in n steps) throughout the routing space. The wave stops when the target is reached, and the path is determined by backtracking through the cells.

  7. Talk:Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Talk:Maze_generation_algorithm

    The python code examples should be removed or replaced. The first (depth-first search) example outputs a maze that only works for small sizes, and at large sizes just looks becomes a grid. The second example doesn't name the algorithm and creates a maze with no start or end. ElThomas 03:46, 4 November 2017 (UTC)

  8. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm described so far only gives the length of the shortest path. To find the actual sequence of steps, the algorithm can be easily revised so that each node on the path keeps track of its predecessor. After this algorithm is run, the ending node will point to its predecessor, and so on, until some node's predecessor is the start node.

  9. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...