Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Historically, the curvature of a differentiable curve was defined through the osculating circle, which is the circle that best approximates the curve at a point. More precisely, given a point P on a curve, every other point Q of the curve defines a circle (or sometimes a line) passing through Q and tangent to the curve at P.
Curvature is usually measured in radius of curvature.A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is as large as a kilometer or mile, as is needed for large scale works like roads and railroads.
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
When rectified, the curve gives a straight line segment with the same length as the curve's arc length. Arc length s of a logarithmic spiral as a function of its parameter θ . Arc length is the distance between two points along a section of a curve .
It is the main tool in the differential geometric treatment of curves because it is far easier and more natural to describe local properties (e.g. curvature, torsion) in terms of a local reference system than using a global one such as Euclidean coordinates. Given a C n + 1-curve γ in which is regular of order n the Frenet frame for the curve ...
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.