Search results
Results from the WOW.Com Content Network
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed ...
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
In an inertial reference frame a free particle has a straight world line. In a non-inertial reference frame the world line of a free particle is curved. Take the example of the fall of an object dropped without initial velocity from a rocket. The rocket has a uniformly accelerated motion with respect to an inertial reference frame.
An inertial frame is a reference frame in relative uniform motion to absolute space. All inertial frames share a universal time. Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' .
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points , defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and ...
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".
In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.