Search results
Results from the WOW.Com Content Network
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Finding k 2 is helpful in understanding the interior structure on Mars. [13] The most updated k 2 obtained by Genova's team is 0.1697 ± 0.0009. [13] As if k 2 is smaller than 0.10 a solid core would be indicated, this tells that at least the outer core is liquid on Mars, [31] and the predicted core radius is 1520–1840 km. [31]
[citation needed] The Schwarzschild radius would be 2 × 6.6738 × 10 −11 m 3 ⋅kg −1 ⋅s −2 × 6.3715 × 10 14 kg / (299 792 458 m⋅s −1) 2 = 9.46 × 10 −13 m = 9.46 × 10 −4 nm. Its average density at that size would be so high that no known mechanism could form such extremely compact objects.
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
At their furthest Mars and Earth can be as far as 401 million km (249 million mi) apart. [191] Mars comes into opposition from Earth every 2.1 years. The planets come into opposition near Mars's perihelion in 2003, 2018 and 2035, with the 2020 and 2033 events being particularly close to perihelic opposition. [192] [193] [194]
For premium support please call: 800-290-4726 more ways to reach us
L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2 ...
The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5] The Parker Solar Probe (via Venus) plans a maximum C 3 of 154 km 2 /s 2. [6] Typical ballistic C 3 (km 2 /s 2) to get from Earth to various planets: Mars 8-16, [7] Jupiter 80, Saturn or Uranus 147. [8] To Pluto (with its orbital inclination) needs about 160–164 km 2 /s 2. [9]