Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
The total energy can also be approximated as = where = is the Lorentz invariant momentum. This can result from holding the mass fixed and increasing the kinetic energy to very large values or by holding the energy E fixed and shrinking the mass m to very small values which also imply a very large γ {\displaystyle \gamma } .
where v is the relative velocity between frames in the x-direction, c is the speed of light, and = (lowercase gamma) is the Lorentz factor. Here, v is the parameter of the transformation, for a given boost it is a constant number, but can take a continuous range of values.
At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x′ = ct′, by substituting the x and x'-values, the same technique produces the same ...
Relativity takes the Lorentz transformation of space-time suggested by invariance of Maxwell's equations and imposes it upon dynamics as well (a revision of Newton's laws of motion). In this example, the Lorentz transformation affects the x-direction only (the relative motion of the two frames is along the x-direction).
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.