enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Names of polyhedra by number of sides. There are generic geometric names for the most common polyhedra. ... ⁠ 5 / 3 ⁠.4.3.4.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  4. Tetradecahedron - Wikipedia

    en.wikipedia.org/wiki/Tetradecahedron

    A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces. A tetradecahedron is sometimes called a tetrakaidecahedron. [1] [2] No difference in meaning is ascribed. [3] [4] The Greek word kai means 'and'.

  5. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    V(3.4. ⁠ 3 / 2 ⁠.4) π − ⁠ π / 2 ⁠ 90° Hexahemioctacron (Dual of cubohemioctahedron) — V(4.6. ⁠ 4 / 3 ⁠.6) π − ⁠ π / 3 ⁠ 120° Octahemioctacron (Dual of octahemioctahedron) — V(3.6. ⁠ 3 / 2 ⁠.6) π − ⁠ π / 3 ⁠ 120° Small dodecahemidodecacron (Dual of small dodecahemidodecacron) — V(5.10. ⁠ 5 / 4 ...

  6. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron. A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them.

  7. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    Its dual polyhedron is the great stellated dodecahedron {⁠ 5 / 2 ⁠, 3}, having three regular star pentagonal faces around each vertex. Stellated icosahedra Stellation is the process of extending the faces or edges of a polyhedron until they meet to form a new polyhedron.

  8. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    Colored regions are cross-sections of the solid cone. Their boundaries (in black) are the named plane sections. A cross section of a polyhedron is a polygon. The conic sections – circles, ellipses, parabolas, and hyperbolas – are plane sections of a cone with the cutting planes at various different angles, as seen in the diagram at left.

  9. Semiregular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Semiregular_polyhedron

    These semiregular solids can be fully specified by a vertex configuration: a listing of the faces by number of sides, in order as they occur around a vertex. For example: 3.5.3.5 represents the icosidodecahedron, which alternates two triangles and two pentagons around each vertex. In contrast: 3.3.3.5 is a pentagonal antiprism.