enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    Mathematics of cyclic redundancy checks. The cyclic redundancy check (CRC) is based on division in the ring of polynomials over the finite field GF (2) (the integers modulo 2), that is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the ...

  3. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...

  4. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...

  5. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    up to 2 bits of triplet omitted (cases not shown in table). Though simple to implement and widely used, this triple modular redundancy is a relatively inefficient ECC. Better ECC codes typically examine the last several tens or even the last several hundreds of previously received bits to determine how to decode the current small handful of ...

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  7. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-64 checksum. The use of the modulus 2 32 − 1 = 4,294,967,295 is also generally implied. The rationale ...

  8. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm (a, b), is the smallest positive integer that is divisible by both a and b. [1][2] Since division of integers by zero is undefined, this definition has meaning only if a and b are both ...

  9. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    Barrett reduction. In modular arithmetic, Barrett reduction is a reduction algorithm introduced in 1986 by P.D. Barrett. [ 1 ] A naive way of computing. would be to use a fast division algorithm. Barrett reduction is an algorithm designed to optimize this operation assuming is constant, and , replacing divisions by multiplications.