enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.

  4. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients".

  5. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.

  6. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    It is a stochastic gradient descent method in that the filter is only adapted based on ... at each step, by finding the gradient of the mean square error, the weights ...

  7. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Empirically, feature scaling can improve the convergence speed of stochastic gradient descent. In support vector machines, [2] it can reduce the time to find support vectors. Feature scaling is also often used in applications involving distances and similarities between data points, such as clustering and similarity search.

  8. ‘The Michael Jackson Video Game Conspiracy’ by Huffington Post

    testkitchen.huffingtonpost.com/michaeljacksonsonic

    By 2003, Mallinson, then in his late teens, had been downloading and comparing Jackson and Sonic tracks for years. That September, he explained his Sonic/Jackson conspiracy theory in a post on Sonic Classic, one of the countless message board communities that dominated early-2000s Internet culture.

  9. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.