Search results
Results from the WOW.Com Content Network
Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory.The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.
In computer programming, unreachable memory is a block of dynamically allocated memory where the program that allocated the memory no longer has any reachable pointer that refers to it. Similarly, an unreachable object is a dynamically allocated object that has no reachable reference to it.
When a program is run, memory is often dynamically allocated in two places: the stack and the heap. Memory is continuously allocated on a stack but not on a heap, thus reflective of their names. Stack also refers to a programming construct, thus to differentiate it, this stack is referred to as the program's function call stack. Technically ...
The C programming language manages memory statically, automatically, or dynamically.Static-duration variables are allocated in main memory, usually along with the executable code of the program, and persist for the lifetime of the program; automatic-duration variables are allocated on the stack and come and go as functions are called and return.
Such blocks are used to store data objects or arrays of objects. Most structured and object-oriented languages provide an area of memory, called the heap or free store, from which objects are dynamically allocated. The example C code below illustrates how structure objects are dynamically allocated and referenced.
A simple memory pool module can allocate, for example, three pools at compile time with block sizes optimized for the application deploying the module. The application can allocate, access and free memory through the following interface: Allocate memory from the pools. The function will determine the pool where the required block fits in.
Chunking refers to strategies for improving performance by using special knowledge of a situation to aggregate related memory-allocation requests. For example, if it is known that a certain kind of object will typically be required in groups of eight, instead of allocating and freeing each object individually, making sixteen calls to the heap ...
The brk and sbrk calls dynamically change the amount of space allocated for the heap segment of the calling process. The change is made by resetting the program break of the process, which determines the maximum space that can be allocated. The program break is the address of the first location beyond the current end of the data region.