enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Timeline of fluid and continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_fluid_and...

    1643 – Evangelista Torricelli provides a relation between the speed of fluid flowing from an orifice to the height of fluid above the opening, given by Torricelli's law. He also builds a mercury barometer and does a series of experiments on vacuum. [1] 1650 – Otto von Guericke invents the first vacuum pump. [1]

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    It takes energy to push a fluid through a pipe, and Antoine de Chézy discovered that the hydraulic head loss was proportional to the velocity squared. [5] Consequently, the Chézy formula relates hydraulic slope S (head loss per unit length) to the fluid velocity V and hydraulic radius R: = =

  4. Hunter Rouse - Wikipedia

    en.wikipedia.org/wiki/Hunter_Rouse

    Hunter Rouse (March 29, 1906 – October 16, 1996) was a hydraulician known for his research on the mechanics of fluid turbulence.. Rouse was a faculty member at the Massachusetts Institute of Technology, Cambridge, from 1929 until 1933, when he moved to Columbia University.

  5. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  6. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]

  7. Similitude - Wikipedia

    en.wikipedia.org/wiki/Similitude

    Similitude's main application is in hydraulic and aerospace engineering to test fluid flow conditions with scaled models. It is also the primary theory behind many textbook formulas in fluid mechanics. The concept of similitude is strongly tied to dimensional analysis.

  8. Reynolds equation - Wikipedia

    en.wikipedia.org/wiki/Reynolds_Equation

    The fluid film thickness is much less than the width and length and thus curvature effects are negligible. (i.e. h ≪ l {\displaystyle h\ll l} and h ≪ w {\displaystyle h\ll w} ). For some simple bearing geometries and boundary conditions, the Reynolds equation can be solved analytically.

  9. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    A physical paradox indicates flaws in the theory.. Fluid mechanics was thus discredited by engineers from the start, which resulted in an unfortunate split – between the field of hydraulics, observing phenomena which could not be explained, and theoretical fluid mechanics explaining phenomena which could not be observed – in the words of the Chemistry Nobel Laureate Sir Cyril Hinshelwood.