Search results
Results from the WOW.Com Content Network
A microfibril is a very fine fibril, or fiber-like strand, consisting of glycoproteins and cellulose. It is usually, but not always, used as a general term in describing the structure of protein fiber, e.g. hair and sperm tail.
The stereoscopic arrangement of microfibrils in the cell wall create systems of turgor pressure which ultimately leads to cellular growth and expansion. Cellulose microfibrils are unique matrix macromolecules, in that they are assembled by cellulose synthase enzymes located on the extracellular surface of the plasma membrane. [17]
Fibrillin is a glycoprotein, which is essential for the formation of elastic fibers found in connective tissue. [2] Fibrillin is secreted into the extracellular matrix by fibroblasts and becomes incorporated into the insoluble microfibrils, which appear to provide a scaffold for deposition of elastin .
Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
Many regions of the DNA are transcribed with RNA as the functional form: rRNA: Ribosomal RNA are used in the ribosome. tRNA: Transfer RNA are used in the translation process by bringing amino acids to the ribosome. snRNA: Small nuclear RNA are used in spliceosomes to help the processing of pre-mRNA. gRNA: Guide RNA are used in RNA editing.
FBN1 is a 230-kb gene with 65 coding exons that encode a 2,871-amino-acid long proprotein called profibrillin which is proteolytically cleaved near its C-terminus by the enzyme furin convertase to give fibrillin-1, a member of the fibrillin family, and the 140-amino-acid long protein hormone asprosin.
RNA-dependent DNA polymerases are a specialized class of polymerases that copy the sequence of an RNA strand into DNA. They include reverse transcriptase , which is a viral enzyme involved in the infection of cells by retroviruses , and telomerase , which is required for the replication of telomeres.
All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide , each of which contains a pentose sugar ( ribose or deoxyribose ), a phosphate group, and a nucleobase . [ 16 ]