Search results
Results from the WOW.Com Content Network
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between ...
The diffusion coefficient is the coefficient in the Fick's first law = /, where J is the diffusion flux (amount of substance) per unit area per unit time, n (for ideal mixtures) is the concentration, x is the position [length].
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The self-diffusion coefficient of water has been experimentally determined with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2]
Diffusivity is a rate of diffusion, a measure of the rate at which particles or heat or fluids can spread. It is measured differently for different mediums. Diffusivity may refer to: Thermal diffusivity, diffusivity of heat; Diffusivity of mass: Mass diffusivity, molecular diffusivity (often called "diffusion coefficient")
If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear. The equation above applies when the diffusion coefficient is isotropic ; in the case of anisotropic diffusion, D is a symmetric positive definite matrix , and the equation is written (for three dimensional diffusion) as:
The diffusion coefficient can be combined with the reaction equilibrium constant to get the final form of the equation, where is the permeability of the membrane. The relationship being P = K D {\displaystyle P=KD}
where L is the characteristic length, u the local flow velocity, D the mass diffusion coefficient, Re the Reynolds number, Sc the Schmidt number, Pr the Prandtl number, and α the thermal diffusivity, = where k is the thermal conductivity, ρ the density, and c p the specific heat capacity.