Search results
Results from the WOW.Com Content Network
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]
The stria vascularis is a rich bed of capillaries and secretory cells; Reissner's membrane is a thin membrane that separates endolymph from perilymph; and the basilar membrane is a mechanically somewhat stiff membrane, supporting the receptor organ for hearing, the organ of Corti, and determines the mechanical wave propagation properties of the ...
The development of the most basic basilar papilla (the auditory organ that later evolved into the Organ of Corti in mammals) happened at the same time as the water-to-land transition of vertebrates, approximately 380 million years ago. [7] The actual coiling or spiral nature of the cochlea occurred to save space inside the skull. [3]
Section through the organ of Corti, showing inner and outer hair cells. The deflection of the hair-cell stereocilia opens mechanically gated ion channels that allow any small, positively charged ions (primarily potassium and calcium) to enter the cell. [10] Unlike many other electrically active cells, the hair cell itself does not fire an ...
The organ of Corti is located in this duct on the basilar membrane, and transforms mechanical waves to electric signals in neurons. The other two sections are known as the scala tympani and the scala vestibuli. These are located within the bony labyrinth, which is filled with fluid called perilymph, similar in composition to cerebrospinal fluid.
The spiral (cochlear) ganglion is a group of neuron cell bodies in the modiolus, the conical central axis of the cochlea.These bipolar neurons innervate the hair cells of the organ of Corti.
The hair cells are the primary auditory receptor cells and they are also known as auditory sensory cells, acoustic hair cells, auditory cells or cells of Corti. The organ of Corti is lined with a single row of inner hair cells and three rows of outer hair cells. The hair cells have a hair bundle at the apical surface of the cell.
The supporting cells including Hensen's cells and Deiter's cells which surround the sensory cells in the organ of Corti are joined by gap junctions, the gap junctions function as electrical and metabolic communication from cell to cell through a long distance. [13]