Search results
Results from the WOW.Com Content Network
A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
In graph theory, a part of discrete mathematics, the BEST theorem gives a product formula for the number of Eulerian circuits in directed (oriented) graphs. The name is an acronym of the names of people who discovered it: N. G. de Bruijn, Tatyana Ehrenfest, Cedric Smith and W. T. Tutte.
Path (graph theory) Seven Bridges of Königsberg. Eulerian path; Three-cottage problem; Shortest path problem. Dijkstra's algorithm. Open Shortest Path First; Flooding algorithm; Route inspection problem; Hamiltonian path. Hamiltonian path problem; Knight's tour; Traveling salesman problem. Nearest neighbour algorithm; Bottleneck traveling ...
A graph G, or one of its subgraphs, is said to be Eulerian if each of its vertices has even degree (its number of incident edges). Every simple cycle in a graph is an Eulerian subgraph, but there may be others. The cycle space of a graph is the collection of its Eulerian subgraphs.
To improve the lower bound, a better way of creating an Eulerian graph is needed. By the triangle inequality, the best Eulerian graph must have the same cost as the best travelling salesman tour; hence, finding optimal Eulerian graphs is at least as hard as TSP. One way of doing this is by minimum weight matching using algorithms with a ...
Doubling the edges of a T-join causes the given graph to become an Eulerian multigraph (a connected graph in which every vertex has even degree), from which it follows that it has an Euler tour, a tour that visits each edge of the multigraph exactly once. This tour will be an optimal solution to the route inspection problem.
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).