Search results
Results from the WOW.Com Content Network
Non-oriented electrical silicon steel (image made with magneto-optical sensor and polarizer microscope) Electrical steel made without special processing to control crystal orientation, non-oriented steel, usually has a silicon level of 2 to 3.5% and has similar magnetic properties in all directions, i.e., it is isotropic.
Further increase in silicon concentration impairs the steel's mechanical properties, causing difficulties for rolling due to brittleness. Among the two types of silicon steel, grain-oriented (GO) and grain non-oriented (GNO), GO is most desirable for magnetic cores. It is anisotropic, offering better magnetic properties than GNO in one ...
non oriented D (formerly B) " non-alloy semi-finished (not finally annealed) E " alloy semi-finished (not finally annealed) K (=D+E) " non-alloy and alloy electrical steel sheet/strip in the semi-processed state N " for normal grain oriented products P: 1.7 T @50 Hz high permeability grain oriented S" conventional grain oriented
Understanding such properties is essential to making quality steel. At room temperature , the most stable form of pure iron is the body-centred cubic (BCC) structure called alpha iron or α-iron. It is a fairly soft metal that can dissolve only a small concentration of carbon, no more than 0.005% at 0 °C (32 °F) and 0.021 wt% at 723 °C ...
Electromagnetic dynamic magnetic domain motion of grain oriented electrical silicon steel Moving domain walls in a grain of silicon steel caused by an increasing external magnetic field in the "downward" direction, observed in a Kerr microscope. White areas are domains with magnetization directed up, dark areas are domains with magnetization ...
Silicon is an important constituent of transformer steel, modifying its resistivity and ferromagnetic properties. The properties of silicon may be used to modify alloys with metals other than iron. "Metallurgical grade" silicon is silicon of 95–99% purity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In 2004, bulk amorphous steel was successfully produced by a groups at Oak Ridge National Laboratory, which refers to their product as "glassy steel", and another at University of Virginia, named "DARVA-Glass 101". [17] [18] The product is non-magnetic at room temperature and significantly stronger than conventional steel. [19] [20]