enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The log-normal distribution is the maximum entropy probability distribution for a random variate X —for which the mean and ... the log-likelihood function is ...

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The χ 2 distribution given by Wilks' theorem converts the region's log-likelihood differences into the "confidence" that the population's "true" parameter set lies inside. The art of choosing the fixed log-likelihood difference is to make the confidence acceptably high while keeping the region acceptably small (narrow range of estimates).

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The log-likelihood of a normal variable is simply the log of its probability density function: ⁡ = ⁡ (). Since this is a scaled and shifted square of a standard normal variable, it is distributed as a scaled and shifted chi-squared variable.

  5. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Since the log likelihood of a normal vector is a quadratic form of the normal vector, it is distributed as a generalized chi-squared variable. [ 17 ] Differential entropy

  6. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...

  7. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Many common test statistics are tests for nested models and can be phrased as log-likelihood ratios or approximations thereof: e.g. the Z-test, the F-test, the G-test, and Pearson's chi-squared test; for an illustration with the one-sample t-test, see below.

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    In statistics, Wilks' theorem offers an asymptotic distribution of the log-likelihood ratio statistic, which can be used to produce confidence intervals for maximum-likelihood estimates or as a test statistic for performing the likelihood-ratio test.

  9. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high ...