enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a

  3. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...

  4. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    For example, a regular hexagon bisects into two type 1 pentagons. Subdivision of convex hexagons is also possible with three (type 3), four (type 4) and nine (type 3) pentagons. By extension of this relation, a plane can be tessellated by a single pentagonal prototile shape in ways that generate hexagonal overlays. For example:

  5. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Broken down, 3 6; 3 6 (both of different transitivity class), or (3 6) 2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 3 4.6, 4 more contiguous equilateral triangles and a single regular hexagon.

  6. Polyhex (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Polyhex_(mathematics)

    Also, as an equilateral triangle is a hexagon and three smaller equilateral triangles it is possible to superimpose a large polyiamond on any polyhex, giving two polyiamonds corresponding to each polyhex. This is used as the basis of an infinite division of a hexagon into smaller and smaller hexagons (an irrep-tiling) or into hexagons and ...

  7. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem, Latin for mystical hexagram) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of ...

  8. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.

  9. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    The proof of the correctness of this construction is fairly intuitive, relying on the symmetry of the problem. The trisection of an angle (dividing it into three equal parts) cannot be achieved with the compass and ruler alone (this was first proved by Pierre Wantzel). The internal and external bisectors of an angle are perpendicular.