enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.

  3. Mersenne's laws - Wikipedia

    en.wikipedia.org/wiki/Mersenne's_laws

    The equation was first proposed by French mathematician and music theorist Marin Mersenne in his 1636 work Harmonie universelle. [2] Mersenne's laws govern the construction and operation of string instruments, such as pianos and harps, which must accommodate the total tension force required to keep the strings at the proper pitch.

  4. Violin acoustics - Wikipedia

    en.wikipedia.org/wiki/Violin_acoustics

    A vibrating string does not produce a single frequency. The sound may be described as a combination of a fundamental frequency and its overtones, which cause the sound to have a quality that is individual to the instrument, known as the timbre. [16]

  5. Sympathetic resonance - Wikipedia

    en.wikipedia.org/wiki/Sympathetic_resonance

    In instruments with undamped strings (e.g. harps, guitars and kotos), strings will resonate at their fundamental or overtone frequencies when other nearby strings are sounded. For example, an A string at 440 Hz will cause an E string at 330 Hz to resonate, because they share an overtone of 1320 Hz (the third harmonic of A and fourth harmonic of E).

  6. Harmonic - Wikipedia

    en.wikipedia.org/wiki/Harmonic

    On strings, bowed harmonics have a "glassy", pure tone. On stringed instruments, harmonics are played by touching (but not fully pressing down the string) at an exact point on the string while sounding the string (plucking, bowing, etc.); this allows the harmonic to sound, a pitch which is always higher than the fundamental frequency of the string.

  7. Acoustic resonance - Wikipedia

    en.wikipedia.org/wiki/Acoustic_resonance

    String resonance of a bass guitar A note with fundamental frequency of 110 Hz. In musical instruments, strings under tension, as in lutes, harps, guitars, pianos, violins and so forth, have resonant frequencies directly related to the mass, length, and tension of the string. The wavelength that will create the first resonance on the string is ...

  8. String (music) - Wikipedia

    en.wikipedia.org/wiki/String_(music)

    In music, strings are long flexible structures on string instruments that produce sound through vibration. Strings are held under tension so that they can vibrate freely. The pitch (frequency) at which a string will vibrate is primarily related to its vibrating length (also called speaking length [ 1 ] ), its tension, and its mass per unit of ...

  9. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    Vibration and standing waves in a string, The fundamental and the first six overtones. The fundamental frequency, often referred to simply as the fundamental (abbreviated as f 0 or f 1), is defined as the lowest frequency of a periodic waveform. [1] In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial ...