Search results
Results from the WOW.Com Content Network
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.
Animation of a half-turn ambigram of the word ambigram, with 180-degree rotational symmetry [1]. An ambigram is a calligraphic composition of glyphs (letters, numbers, symbols or other shapes) that can yield different meanings depending on the orientation of observation.
The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular polygon, S n: symmetric group on n letters, and A n: alternating group on n letters. The character tables then follow for all groups.
The infinite series of axial or prismatic groups have an index n, which can be any integer; in each series, the nth symmetry group contains n-fold rotational symmetry about an axis, i.e. symmetry with respect to a rotation by an angle 360°/n. n=1 covers the cases of no rotational symmetry at all.
C 1 is the trivial group containing only the identity operation, which occurs when the figure is asymmetric, for example the letter "F". C 2 is the symmetry group of the letter "Z", C 3 that of a triskelion, C 4 of a swastika, and C 5, C 6, etc. are the symmetry groups of similar swastika-like figures with five, six, etc. arms instead of four.
Pentominoes and tetrominoes resemble (and are traditionally named after) Latin letters, and the rotation of these letterlike objects forms the basis of several games, including Tetris. Though not strict transformation, the substitution of a plural "s" with its near-reflection "z" is a fairly common trope among some minor league sports teams in ...
Symmetry (left) and asymmetry (right) A spherical symmetry group with octahedral symmetry. The yellow region shows the fundamental domain. A fractal-like shape that has reflectional symmetry, rotational symmetry and self-similarity, three forms of symmetry. This shape is obtained by a finite subdivision rule.
The first letter is either lowercase p or c to represent primitive or centered unit cells. The next number is the rotational symmetry, as given above. The presence of mirror planes are denoted m, while glide reflections are only denoted g. Screw axes do not exist in two-dimensional spaces.