enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  3. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  4. Conditional dependence - Wikipedia

    en.wikipedia.org/wiki/Conditional_Dependence

    In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event be 'I have a new phone'; event be 'I have a new watch'; and event be 'I am happy'; and suppose that having either a new phone or a new watch increases the probability of my being happy.

  5. De Finetti's theorem - Wikipedia

    en.wikipedia.org/wiki/De_Finetti's_theorem

    A random variable X has a Bernoulli distribution if Pr(X = 1) = p and Pr(X = 0) = 1 − p for some p ∈ (0, 1).. De Finetti's theorem states that the probability distribution of any infinite exchangeable sequence of Bernoulli random variables is a "mixture" of the probability distributions of independent and identically distributed sequences of Bernoulli random variables.

  6. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).

  7. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  8. Basu's theorem - Wikipedia

    en.wikipedia.org/wiki/Basu's_theorem

    Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and

  9. Vine copula - Wikipedia

    en.wikipedia.org/wiki/Vine_copula

    These algorithms assign variables with strong dependence or strong conditional dependence to low order trees in order that higher order trees have weak conditional dependence or conditional independence. Hence parsimonious truncated vines are obtained for a large number of variables. Software with a user interface in R are available (e.g., [38]).