Search results
Results from the WOW.Com Content Network
Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]
This should not be confused with "absorbance". Spectral hemispherical absorptance: A ν A λ — Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance". Directional absorptance: A Ω — Radiance absorbed by a surface, divided by the radiance incident onto that surface.
The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3], times an efficiency of absorption (area/absorber, [cm 2]). Several sources [ 2 ] [ 12 ] [ 3 ] replace nσ λ with k λ r , where k λ is the absorption coefficient per unit density and r is the density of the gas.
In the context of ozone shielding of ultraviolet light, absorption cross section is the ability of a molecule to absorb a photon of a particular wavelength and polarization. Analogously, in the context of nuclear engineering, it refers to the probability of a particle (usually a neutron ) being absorbed by a nucleus.
In biochemistry, the molar absorption coefficient of a protein at 280 nm depends almost exclusively on the number of aromatic residues, particularly tryptophan, and can be predicted from the sequence of amino acids. [6] Similarly, the molar absorption coefficient of nucleic acids at 260 nm can be predicted given the nucleotide sequence.
According to Sazonov and Shaw, [7] the Kuenen coefficient is defined as "the volume of saturating gas V(g), reduced to T° = 273.15 K, p° = bar, which is dissolved by unit mass of pure solvent at the temperature of measurement and partial pressure 1 bar."