enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of RNA-Seq bioinformatics tools - Wikipedia

    en.wikipedia.org/wiki/List_of_RNA-Seq...

    NEUMA is a tool to estimate RNA abundances using length normalization, based on uniquely aligned reads and mRNA isoform models. NEUMA uses known transcriptome data available in databases like RefSeq. NOISeq NOISeq is a non-parametric approach for the identification of differentially expressed genes from count data or previously normalized count ...

  3. DESeq2 - Wikipedia

    en.wikipedia.org/wiki/DESeq2

    DESeq2 is a software package in the field of bioinformatics and computational biology for the statistical programming language R. It is primarily employed for the analysis of high-throughput RNA sequencing (RNA-seq) data to identify differentially expressed genes between different experimental conditions.

  4. MA plot - Wikipedia

    en.wikipedia.org/wiki/MA_plot

    To determine whether normalization is needed, one can plot Cy5 (R) intensities against Cy3 (G) intensities and see whether the slope of the line is around 1. An improved method, which is basically a scaled, 45 degree rotation of the R vs. G plot is an MA-plot. [ 4 ]

  5. RNA-Seq - Wikipedia

    en.wikipedia.org/wiki/RNA-Seq

    Methods: Most tools use regression or non-parametric statistics to identify differentially expressed genes, and are either based on read counts mapped to a reference genome (DESeq2, limma, edgeR) or based on read counts derived from alignment-free quantification (sleuth, [106] Cuffdiff, [107] Ballgown [108]). [109]

  6. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution. For ...

  7. Single-cell transcriptomics - Wikipedia

    en.wikipedia.org/wiki/Single-cell_transcriptomics

    These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13] Normalisation of RNA-seq data accounts for cell to cell variation in the efficiencies of the cDNA library formation and sequencing.

  8. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one.

  9. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.