enow.com Web Search

  1. Ads

    related to: aristotelian triangle examples geometry problems

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle of opposition - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_opposition

    In the system of Aristotelian logic, the triangle of opposition is a diagram [which?] representing the different ways in which each of the three propositions of the system is logically related ('opposed') to each of the others. The system is also useful in the analysis of syllogistic logic, serving to identify the allowed logical conversions ...

  3. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    A direct proof using classical geometry was developed by James Mercer in 1923. [2] This solution involves drawing one additional line, and then making repeated use of the fact that the internal angles of a triangle add up to 180° to prove that several triangles drawn within the large triangle are all isosceles.

  4. Aristotelian realist philosophy of mathematics - Wikipedia

    en.wikipedia.org/wiki/Aristotelian_realist...

    Aristotelian views of (cardinal or counting) numbers begin with Aristotle's observation that the number of a heap or collection is relative to the unit or measure chosen: "'number' means a measured plurality and a plurality of measures ... the measure must always be some identical thing predicable of all the things it measures, e.g. if the things are horses, the measure is 'horse'."

  5. Aristotle's axiom - Wikipedia

    en.wikipedia.org/wiki/Aristotle's_axiom

    Aristotle's axiom is an axiom in the foundations of geometry, proposed by Aristotle in On the Heavens that states: If X O Y ^ {\displaystyle {\widehat {\rm {XOY}}}} is an acute angle and AB is any segment, then there exists a point P on the ray O Y → {\displaystyle {\overrightarrow {OY}}} and a point Q on the ray O X → {\displaystyle ...

  6. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  7. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    Non-Euclidean geometry is an example of a scientific revolution in the history of science, in which mathematicians and scientists changed the way they viewed their subjects. [24] Some geometers called Lobachevsky the "Copernicus of Geometry" due to the revolutionary character of his work. [25] [26]

  8. Aristotle's wheel paradox - Wikipedia

    en.wikipedia.org/wiki/Aristotle's_wheel_paradox

    Aristotle's wheel paradox is a paradox or problem appearing in the pseudo-Aristotelian Greek work Mechanica. It states as follows: A wheel is depicted in two-dimensional space as two circles . Its larger, outer circle is tangential to a horizontal surface (e.g. a road that it rolls on), while the smaller, inner one has the same center and is ...

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...

  1. Ads

    related to: aristotelian triangle examples geometry problems