enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Lexicographic max-min optimization - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_max-min...

    Branching on saturated subsets - finding subsets of variables that must be fixed at the minimum value, and finding the maximum-minimum value for the other variables. Using the SORT constraint - a constraint on two vectors x and y, saying that y contains the same elements as x sorted in ascending order. This constraint can be computed ...

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  5. Minimum relevant variables in linear system - Wikipedia

    en.wikipedia.org/wiki/Minimum_relevant_variables...

    In the complementary problem maximum feasible linear subsystem (Max-FLS), the goal is to find a maximum subset of the constraints that can be satisfied simultaneously. [5] Max-FLS[≠] can be solved in polynomial time. Max-FLS[=] is NP-hard even with homogeneous systems and bipolar coefficients.

  6. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    However, to apply it, the origin (all variables equal to 0) must be a feasible point. This condition is satisfied only when all the constraints (except non-negativity) are less-than constraints and with positive constant on the right-hand side. The Big M method introduces surplus and artificial variables to convert all inequalities into that form.

  8. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  9. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]