Search results
Results from the WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The product of the denominators is always a common denominator, as in: ... 36 is the least common multiple of 12 and 18. Their product, 216, is also a common ...
For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. Indeed, multiplication by 3, followed by division by 3, yields the original number. The division of a number other than 0 by itself equals 1. Several mathematical concepts expand upon the fundamental idea of multiplication.
If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0. Then we can substitute again, letting x = b and y = c, to show that if bc = 0 then b = 0 or c = 0. Therefore, if abc = 0, then a = 0 or (b = 0 or c = 0), so abc = 0 implies ...
In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1.
A continued fraction is an expression of the form = + + + + + where the a n (n > 0) are the partial numerators, the b n are the partial denominators, and the leading term b 0 is called the integer part of the continued fraction.
The product of any integer and any integer is a multiple of . In particular, n {\displaystyle n} , which is equal to n × 1 {\displaystyle n\times 1} , is a multiple of n {\displaystyle n} (every integer is a multiple of itself), since 1 is an integer.