Search results
Results from the WOW.Com Content Network
This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.
Parametric programming is a type of mathematical optimization, where the optimization problem is solved as a function of one or multiple parameters. [1] Developed in parallel to sensitivity analysis , its earliest mention can be found in a thesis from 1952. [ 2 ]
A fifth-generation programming language (5GL) is a high-level programming language based on problem-solving using constraints given to the program, rather than using an algorithm written by a programmer. [1] Most constraint-based and logic programming languages and some other declarative languages are fifth-generation languages.
It teaches fundamental principles of computer programming, including recursion, abstraction, modularity, and programming language design and implementation. MIT Press published the first edition in 1984, and the second edition in 1996. It was formerly used as the textbook for MIT's introductory course in computer science.
Sequential linear-quadratic programming (SLQP) is an iterative method for nonlinear optimization problems where objective function and constraints are twice continuously differentiable. Similarly to sequential quadratic programming (SQP), SLQP proceeds by solving a sequence of optimization subproblems.
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework.
From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.
HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...