Search results
Results from the WOW.Com Content Network
The duty cycle expresses the pulse width as a fraction or percentage of one complete cycle. Pulse width is an important measure in radar systems. Radars transmit pulses of radio frequency energy out of an antenna and then listen for their reflection off of target objects. The amount of energy that is returned to the radar receiver is a function ...
The PRF is normally much lower than the frequency. For instance, a typical World War II radar like the Type 7 GCI radar had a basic carrier frequency of 209 MHz (209 million cycles per second) and a PRF of 300 or 500 pulses per second. A related measure is the pulse width, the amount of time the transmitter is turned on during each pulse.
For example, a system with a 3 GHz carrier frequency and a pulse width of 1 μs will have a carrier period of approximately 333 ps. Each transmitted pulse will contain about 3000 carrier cycles and the velocity and range ambiguity values for such a system would be:
The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its duration. For example, a one-microsecond pulse has a Rayleigh bandwidth of one megahertz. [1] The essential bandwidth is defined as the portion of a signal spectrum in the frequency domain which contains most of the energy of the signal. [2]
Servo and receiver connections A diagram showing typical PWM timing for a servomotor. Servo control is a method of controlling many types of RC/hobbyist servos by sending the servo a PWM (pulse-width modulation) signal, a series of repeating pulses of variable width where either the width of the pulse (most common modern hobby servos) or the duty cycle of a pulse train (less common today ...
Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), [1] is any method of representing a signal as a rectangular wave with a varying duty cycle (and for some methods also a varying period). PWM is useful for controlling the average power or amplitude delivered by an electrical signal.
In this example there are 1000 pulses per second (one kilohertz pulse rate) with a gated pulse width of 42 μs. The pulse packet frequency in this example is 27.125 MHz of RF energy. The duty cycle for a pulsed radio frequency is the percent time the RF packet is on, 4.2% for this example ([0.042 ms × 1000 pulses divided by 1000 ms/s] × 100 ...
The ideal model for the simplest, and historically first type of signals a pulse radar or sonar can transmit is a truncated sinusoidal pulse (also called a CW --carrier wave-- pulse), of amplitude and carrier frequency, , truncated by a rectangular function of width, . The pulse is transmitted periodically, but that is not the main topic of ...