Search results
Results from the WOW.Com Content Network
For every cluster u (each input point), in u.mean and u.rep store the mean of the points in the cluster and a set of c representative points of the cluster (initially c = 1 since each cluster has one data point). Also u.closest stores the cluster closest to u. All the input points are inserted into a k-d tree T
BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
In statistics, k-medians clustering [1] [2] is a cluster analysis algorithm. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. k-medians is a variation of k-means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead calculates the median.
A simple agglomerative clustering algorithm is described in the single-linkage clustering page; it can easily be adapted to different types of linkage (see below). Suppose we have merged the two closest elements b and c, we now have the following clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. To do that, we need to take ...
The canopy clustering algorithm is an unsupervised pre-clustering algorithm introduced by Andrew McCallum, Kamal Nigam and Lyle Ungar in 2000. [1] It is often used as preprocessing step for the K-means algorithm or the hierarchical clustering algorithm.
Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering.
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.