Search results
Results from the WOW.Com Content Network
The tubules consist of repeating units of the proteins TssA and TssB (VipA/VipB) arranged as a sheath around a tube built from stacked hexameric rings of the haemolysin co-regulated protein (Hcp). [ 12 ] [ 13 ] At the tip of the Hcp tube sits a trimer of the phage tail spike-like protein VgrG, which is in turn capped by a pointed PAAR domain ...
Multiple shapes of virions. Since the genome of viruses is relatively simple, the capsid architecture relies on repetition of simple structures, similar to the faces of a polyhedron. Each face in turn is formed by a repetition of simpler sub-units, with the amount of repetitions called a triangulation number (T). Similar capsid structures can ...
An example of a bacteriophage known to follow the lysogenic cycle and the lytic cycle is the phage lambda of E. coli. [53] Sometimes prophages may provide benefits to the host bacterium while they are dormant by adding new functions to the bacterial genome, in a phenomenon called lysogenic conversion.
The integration of phage λ takes place at a special attachment site in the bacterial and phage genomes, called att λ. The sequence of the bacterial att site is called attB, between the gal and bio operons, and consists of the parts B-O-B', whereas the complementary sequence in the circular phage genome is called attP and consists of the parts ...
Genetic studies on M13 using conditional lethal mutants, initiated by David Pratt and colleagues, led to description of phage gene functions. [ 32 ] [ 33 ] Notably, the protein product of gene 5, which is required for synthesis of progeny single-stranded DNA, is made in large amounts in the infected bacteria, [ 34 ] [ 35 ] [ 36 ] and it binds ...
However, some tailed bacteriophage genomes can vary quite significantly in nucleotide sequence, even among the same genus. Due to their characteristic structure and possession of potentially homologous genes, it is believed these bacteriophages possess a common origin.
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
The species was formerly named T-even bacteriophage, a name which also encompasses, among other strains (or isolates), Enterobacteria phage T2, Enterobacteria phage T4 and Enterobacteria phage T6. Use in research