enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle Hough Transform - Wikipedia

    en.wikipedia.org/wiki/Circle_Hough_Transform

    The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.

  3. Hessian affine region detector - Wikipedia

    en.wikipedia.org/wiki/Hessian_Affine_region_detector

    The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis.Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points.

  4. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    Use of the Hough transform on noisy images is a very delicate matter and generally, a denoising stage must be used before. In the case where the image is corrupted by speckle, as is the case in radar images, the Radon transform is sometimes preferred to detect lines, because it attenuates the noise through summation.

  5. Generalised Hough transform - Wikipedia

    en.wikipedia.org/wiki/Generalised_Hough_transform

    The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.

  6. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    BGSLibrary includes the original LBP implementation for motion detection [12] as well as a new LBP operator variant combined with Markov Random Fields [13] with improved recognition rates and robustness. dlib, an open source C++ library: implementation. scikit-image, an open source Python library. Provides a c-based python implementation for LBP

  7. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Connected-component labeling is used in computer vision to detect connected regions in binary digital images, although color images and data with higher dimensionality can also be processed. [1] [2] When integrated into an image recognition system or human-computer interaction interface, connected component labeling can operate on a variety of ...

  8. Blob detection - Wikipedia

    en.wikipedia.org/wiki/Blob_detection

    In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense ...

  9. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.