Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
For example, one of the solutions that may be found by EM in a mixture model involves setting one of the components to have zero variance and the mean parameter for the same component to be equal to one of the data points. The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function ...
For example, if the mixture components are Gaussian distributions, there will be a mean and variance for each component. If the mixture components are categorical distributions (e.g., when each observation is a token from a finite alphabet of size V ), there will be a vector of V probabilities summing to 1.
We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order Gaussian kernel. [14] The figure shows the joint density estimate that results from using the automatically selected bandwidth. Matlab script for the example
EM computes optimum values of the parameters of the Bayes network itself. VB computes optimum values of the parameters of the distributions used to approximate the parameters and latent variables of the Bayes network. For example, a typical Gaussian mixture model will have parameters for the mean and variance of each of the mixture components ...
Middle row: Four random mixtures used as input to the algorithm. Bottom row: The reconstructed videos. Independent component analysis attempts to decompose a multivariate signal into independent non-Gaussian signals. As an example, sound is usually a signal that is composed of the numerical addition, at each time t, of signals from several sources.
Gaussian processes can also be used in the context of mixture of experts models, for example. [28] [29] The underlying rationale of such a learning framework consists in the assumption that a given mapping cannot be well captured by a single Gaussian process model. Instead, the observation space is divided into subsets, each of which is ...
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.