enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A Bayesian Gaussian mixture model is commonly extended to fit a vector of unknown parameters (denoted in bold), or multivariate normal distributions. ... Matlab code ...

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.

  5. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    We consider estimating the density of the Gaussian mixture (4π) −1 exp(− 1 ⁄ 2 (x 1 2 + x 2 2)) + (4π) −1 exp(− 1 ⁄ 2 ((x 1 - 3.5) 2 + x 2 2)), from 500 randomly generated points. We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order ...

  6. Subspace Gaussian mixture model - Wikipedia

    en.wikipedia.org/.../Subspace_Gaussian_mixture_model

    Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space. [1]

  7. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Gaussian processes can also be used in the context of mixture of experts models, for example. [28] [29] The underlying rationale of such a learning framework consists in the assumption that a given mapping cannot be well captured by a single Gaussian process model. Instead, the observation space is divided into subsets, each of which is ...

  8. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    Complexity: The temporal complexity of any signal mixture is greater than that of its simplest constituent source signal. Those principles contribute to the basic establishment of ICA. If the signals extracted from a set of mixtures are independent and have non-Gaussian distributions or have low complexity, then they must be source signals. [6] [7]

  9. Dirichlet process - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_process

    The fact that there is no limit to the number of distinct components which may be generated makes this kind of model appropriate for the case when the number of mixture components is not well-defined in advance. For example, the infinite mixture of Gaussians model, [10] as well as associated mixture regression models, e.g. [11]