Search results
Results from the WOW.Com Content Network
Watt's curve, which arose in the context of early work on the steam engine, is a sextic in two variables.. One method of solving the cubic equation involves transforming variables to obtain a sextic equation having terms only of degrees 6, 3, and 0, which can be solved as a quadratic equation in the cube of the variable.
Septic equations solvable by radicals have a Galois group which is either the cyclic group of order 7, or the dihedral group of order 14, or a metacyclic group of order 21 or 42. [ 1 ] The L (3, 2) Galois group (of order 168) is formed by the permutations of the 7 vertex labels which preserve the 7 "lines" in the Fano plane . [ 1 ]
The polynomial () (+) is a cubic polynomial: after multiplying out and collecting terms of the same degree, it becomes + +, with highest exponent 3.. The polynomial (+ +) + (+ + +) is a quintic polynomial: upon combining like terms, the two terms of degree 8 cancel, leaving + + + +, with highest exponent 5.
The generator is used in evolution equations such as the Kolmogorov backward equation, which describes the evolution of statistics of the process; its L 2 Hermitian adjoint is used in evolution equations such as the Fokker–Planck equation, also known as Kolmogorov forward equation, which describes the evolution of the probability density ...
Let be the -valued Itô diffusion solving the stochastic differential equation = + (). The infinitesimal generator of is defined by its action on compactly-supported (twice differentiable with continuous second derivative) functions : as [2]
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems.
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
Wichmann–Hill is a pseudorandom number generator proposed in 1982 by Brian Wichmann and David Hill. [1] It consists of three linear congruential generators with different prime moduli, each of which is used to produce a uniformly distributed number between 0 and 1. These are summed, modulo 1, to produce the result. [2]