Search results
Results from the WOW.Com Content Network
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras:
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.
If the winding number is non-zero, the point lies inside the polygon. This algorithm is sometimes also known as the nonzero-rule algorithm. To check if a given point lies inside or outside a polygon: Draw a horizontal line to the right of each point and extend it to infinity. Count the number of times the line intersects with polygon edges.
In arithmetic geometry, the Cox–Zucker machine is an algorithm created by David A. Cox and Steven Zucker.This algorithm determines whether a given set of sections [further explanation needed] provides a basis (up to torsion) for the Mordell–Weil group of an elliptic surface E → S, where S is isomorphic to the projective line.
The Bentley–Ottmann algorithm processes a sequence of + events, where denotes the number of input line segments and denotes the number of crossings. Each event is processed by a constant number of operations in the binary search tree and the event queue, and (because it contains only segment endpoints and crossings between adjacent segments ...
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})