Search results
Results from the WOW.Com Content Network
In a binary search tree, a right rotation is the movement of a node, X, down to the right. This rotation assumes that X has a left child (or subtree). X's left child, R, becomes X's parent node and R's right child becomes X's new left child. This rotation is done to balance the tree; specifically when the left subtree of node X has a ...
A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block swap: Rotate region A; Rotate region B; Rotate region AB
Some say that the direction of rotation reflects the direction that a node is moving upon rotation (a left child rotating into its parent's location is a right rotation) while others say that the direction of rotation reflects which subtree is rotating (a left subtree rotating into its parent's location is a left rotation, the opposite of the ...
In a binary tree the balance factor of a node X is defined to be the height difference ():= (()) (()) [6]: 459 of its two child sub-trees rooted by node X. A node X with () < is called "left-heavy", one with () > is called "right-heavy", and one with () = is sometimes simply called "balanced".
Claim: If array A has length n, then performing Heap's algorithm will either result in A being "rotated" to the right by 1 (i.e. each element is shifted to the right with the last element occupying the first position) or result in A being unaltered, depending if n is even or odd, respectively.
Array rotation: move the items in an array to the left or right by some number of spaces, with values on the edges wrapping around to the other side.
Rotate (or Roll): the n topmost items are moved on the stack in a rotating fashion. For example, if n = 3, items 1, 2, and 3 on the stack are moved to positions 2, 3, and 1 on the stack, respectively. Many variants of this operation are possible, with the most common being called left rotate and right rotate.
Čulík & Wood (1982) define the "right spine" of a binary tree to be the path obtained by starting from the root and following right child links until reaching a node that has no right child. If a tree has the property that not all nodes belong to the right spine, there always exists a right rotation that increases the length of the right spine.