Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Conversely, a decimal expansion that terminates or repeats must be a rational number. These are provable properties of rational numbers and positional number systems and are not used as definitions in mathematics. Irrational numbers can also be expressed as non-terminating continued fractions (which in some cases are periodic), and in many ...
The decimal expansion of non-negative real number x will end in zeros (or in nines) if, and only if, x is a rational number whose denominator is of the form 2 n 5 m, where m and n are non-negative integers. Proof:
In this context, the usual decimals, with a finite number of non-zero digits after the decimal separator, are sometimes called terminating decimals. A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144 ). [ 4 ]
Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q[√ 5] = Q + √ 5 Q, the field generated by the rational numbers and . Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q[√ 5]. For recurring decimals, the recurring ...
While infinite decimal expansions are not unique (for example, 1. ... (or more precisely the representation in base e of 3, which is of course a non-terminating number).
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The positional decimal system is presently universally used in human writing. The base 1000 is also used (albeit not universally), by grouping the digits and considering a sequence of three decimal digits as a single digit. This is the meaning of the common notation 1,000,234,567 used for very large numbers.