enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    The integral here is a complex contour integral which is path-independent because ⁡ is holomorphic on the whole complex plane . In many applications, the function argument is a real number, in which case the function value is also real.

  3. Probability integral transform - Wikipedia

    en.wikipedia.org/wiki/Probability_integral_transform

    One use for the probability integral transform in statistical data analysis is to provide the basis for testing whether a set of observations can reasonably be modelled as arising from a specified distribution. Specifically, the probability integral transform is applied to construct an equivalent set of values, and a test is then made of ...

  4. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    [1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, Q ( x ) {\displaystyle Q(x)} is the probability that a standard normal random variable takes a value larger than x {\displaystyle x} .

  5. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  6. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    The following Python code with the SymPy library will allow for calculation of the values of and to 20 digits of precision: from sympy import * def lag_weights_roots ( n ): x = Symbol ( "x" ) roots = Poly ( laguerre ( n , x )) . all_roots () x_i = [ rt . evalf ( 20 ) for rt in roots ] w_i = [( rt / (( n + 1 ) * laguerre ( n + 1 , rt )) ** 2 ...

  7. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    The quantile function, Q, of a probability distribution is the inverse of its cumulative distribution function F. The derivative of the quantile function, namely the quantile density function, is yet another way of prescribing a probability distribution. It is the reciprocal of the pdf composed with the quantile function.

  8. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.

  9. Monte Carlo integration - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_integration

    An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.