Search results
Results from the WOW.Com Content Network
It explains the fact that, in the first few minutes after the Big Bang, as the "soup" of free protons and neutrons which had initially been created in about a 6:1 ratio cooled to the point where nuclear binding was possible, almost all atomic nuclei to form were helium-4 nuclei. The binding of the nucleons in helium-4 is so tight that its ...
The unusual stability of the helium-4 nucleus is also important cosmologically: it explains the fact that in the first few minutes after the Big Bang, as the "soup" of free protons and neutrons which had initially been created in about 6:1 ratio cooled to the point that nuclear binding was possible, almost all first compound atomic nuclei to ...
Illustration of a proton–proton chain, from hydrogen forming deuterium, helium-3, and regular helium-4. Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.
An exception to this general trend is the helium-4 nucleus, whose binding energy is higher than that of lithium, the next heavier element. This is because protons and neutrons are fermions, which according to the Pauli exclusion principle cannot exist in the same nucleus in exactly the same state. Each proton or neutron's energy state in a ...
The binding energy of helium is the energy source of the Sun and of most stars. [12] The sun is composed of 74 percent hydrogen (measured by mass), an element having a nucleus consisting of a single proton. Energy is released in the Sun when 4 protons combine into a helium nucleus, a process in which two of them are also converted to neutrons. [11]
Helium-4 is produced by alpha-decay, and the helium trapped in Earth's crust is also mostly non-primordial. In other types of radioactive decay, such as cluster decay , larger species of nuclei are ejected (for example, neon-20), and these eventually become newly formed stable atoms.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Almost all neutrons that fused instead of decaying ended up combined into helium-4, due to the fact that helium-4 has the highest binding energy per nucleon among light elements. This predicts that about 8% of all atoms should be helium-4, leading to a mass fraction of helium-4 of about 25%, which is in line with observations.