enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  3. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet architecture and a possible modification. On the top is half of the original AlexNet (which is split into two halves, one per GPU). On the bottom is the same architecture but with the last "projection" layer replaced by another one that projects to fewer outputs.

  4. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  5. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    1994 LeNet was a larger version of 1989 LeNet designed to fit the larger MNIST database. It had more feature maps in its convolutional layers, and had an additional layer of hidden units, fully connected to both the last convolutional layer and to the output units. It has 2 convolutions, 2 average poolings, and 2 fully connected layers.

  6. Data warehouse - Wikipedia

    en.wikipedia.org/wiki/Data_warehouse

    Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...

  7. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    This was later solved by the ResNet architecture. The architecture consists of three parts stacked on top of one another: [2] The stem (data ingestion): The first few convolutional layers perform data preprocessing to downscale images to a smaller size. The body (data processing): The next many Inception modules perform the bulk of data processing.

  8. Data vault modeling - Wikipedia

    en.wikipedia.org/wiki/Data_Vault_Modeling

    The new specification consists of three pillars: methodology (SEI/CMMI, Six Sigma, SDLC, etc..), the architecture (amongst others an input layer (data stage, called persistent staging area in Data Vault 2.0) and a presentation layer (data mart), and handling of data quality services and master data services), and the model. Within the ...

  9. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    Similar to the Convolutional layer, the output of recurrent layers are usually fed into a fully-connected layer for further processing. See also: RNN model. [6] [7] [8] The Normalization layer adjusts the output data from previous layers to achieve a regular distribution. This results in improved scalability and model training.