Search results
Results from the WOW.Com Content Network
Integral monotopic proteins are permanently attached to the cell membrane from one side. [5] Three-dimensional structures of the following integral monotopic proteins have been determined: prostaglandin H2 syntheses 1 and 2 (cyclooxygenases) lanosterol synthase and squalene-hopene cyclase; microsomal prostaglandin E synthase
Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane (integral monotopic).
GLUTs are integral membrane proteins that contain 12 membrane-spanning helices with both the amino and carboxyl termini exposed on the cytoplasmic side of the plasma membrane. GLUT proteins transport glucose and related hexoses according to a model of alternate conformation, [5] [6] [7] which predicts that the transporter exposes a single ...
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
Schematic representation of transmembrane proteins: 1) a single-pass membrane protein 2) a multipass membrane protein (α-helix) 3) a multipass membrane protein β-sheet. The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane.
Depiction of the transmembrane proteins that make up tight junctions: occludin, claudins, and JAM proteins. Occludin was the first integral membrane protein to be identified. It has a molecular weight of ~60kDa. It consists of four transmembrane domains and both the N-terminus and the C-terminus of the protein are intracellular.
A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: H + [on one side of a biological membrane] + energy ⇌ H + [on the other side of the membrane]
Intramembrane proteases are integral membrane proteins that are polytopic transmembrane proteins with multiple transmembrane helices. [5] [17] Their active sites are located within the transmembrane helices and form an aqueous environment within the hydrophobic lipid bilayer.