enow.com Web Search

  1. Ad

    related to: how to calculate segment length formula for triangle

Search results

  1. Results from the WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  3. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  4. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):

  5. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  6. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The two squared formulas inside the square root give the areas of squares on the horizontal and vertical sides, and the outer square root converts the area of the square on the hypotenuse into the length of the hypotenuse. [3] It is also possible to compute the distance for points given by polar coordinates.

  7. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    This formula can be derived by partitioning the n-sided polygon into n congruent isosceles triangles, and then noting that the apothem is the height of each triangle, and that the area of a triangle equals half the base times the height. The following formulations are all equivalent:

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  9. Mean line segment length - Wikipedia

    en.wikipedia.org/wiki/Mean_line_segment_length

    Monte Carlo method to approximate the mean line segment length of a unit square. Since computing the mean line segment length involves calculating multidimensional integrals, various methods for numerical integration can be used to approximate this value for any shape. One such method is the Monte Carlo method. To approximate the mean line ...

  1. Ad

    related to: how to calculate segment length formula for triangle